学术论文
2025
- . Phased manifold-based RRT*: An optimized motion planning approach for autonomous bow-in berthing of inland vessels. Journal of Ocean Engineering and Science, 2025. https://doi.org/10.1016/j.joes.2025.12.013
- . Robust composite event-triggered control for heterogeneous ships: Application to an auto-detecting operation. ISA Transactions, 2025. https://doi.org/10.1016/j.isatra.2025.11.035
- . A novel arena-based collision avoidance behavior analysis method for autonomous ships. Ocean Engineering 339, 122056, 2025. https://doi.org/10.1016/j.oceaneng.2025.122056
- . A novel waterway navigability assessment method based on encounter safety analysis of ship autonomous navigation. Ocean Engineering 332, 121388, 2025. https://doi.org/10.1016/j.oceaneng.2025.121388
- . Research on the risk of submarine cable damage from anchored ships based on probability analysis. Reliability Engineering & System Safety 261, 111114, 2025. https://doi.org/10.1016/j.ress.2025.111114
- . Multiple sensor fault-tolerant predictive control for autonomous surface vehicle formation. ISA Transactions, 2025. https://doi.org/10.1016/j.isatra.2025.07.053
- . An overview of unmanned surface vehicles: Methods, practices, and applications. Control Engineering Practice 164, 106479, 2025. https://doi.org/10.1016/j.conengprac.2025.106479
- . Multi-objective bi-level rescue task planning strategy for unmanned surface vehicles with dynamic adjustment mechanism. 2025 IEEE 5th International Conference on Computer Communication and Artificial Intelligence (CCAI), Haikou, China, 2025, pp. 676-683. https://doi.org/10.1109/CCAI65422.2025.11189844
- . Multistage vessel berthing position and attitude planning based on improved RRT* algorithm. 2025 IEEE 5th International Conference on Computer Communication and Artificial Intelligence (CCAI), Haikou, China, 2025, pp. 690-696. https://doi.org/10.1109/CCAI65422.2025.11189509
- . Collision avoidance for group targets based on clustering velocity obstacle algorithm. 2025 IEEE 5th International Conference on Computer Communication and Artificial Intelligence (CCAI), Haikou, China, 2025, pp. 748-754. https://doi.org/10.1109/CCAI65422.2025.11189631
- . Advanced prediction of container vessels arrival time at hong kong port in 2023: A comparative analysis. 2025 IEEE 5th International Conference on Computer Communication and Artificial Intelligence (CCAI), Haikou, China, 2025, pp. 825-832. https://doi.org/10.1109/CCAI65422.2025.11189667
- . 利用激光雷达进行船舶位姿感知. 武汉大学学报(信息科学版), 2025, 50(04): 782-791. https://doi.org/10.13203/j.whugis20220792
- . 船舶远程驾控人机交互界面优化设计研究. 交通运输工程学报,2025,25(03):304-316. https://doi.org/10.19818/j.cnki.1671-1637.2025.03.020
- . 内河船舶远程驾控技术试验研究. 交通运输工程学报,2025,25(02):141-155. https://doi.org/10.19818/j.cnki.1671-1637.2025.02.009
- . 融合激光雷达和惯性导航的船舶靠离泊高精度定位方法. 中国舰船研究, 2025, 20 (05): 280-288. https://doi.org/10.19693/j.issn.1673-3185.03858
2024
- . A review on motion prediction for intelligent ship navigation. Journal of Marine Science and Engineering 12(1), 107, 2024. https://doi.org/10.3390/jmse12010107
- . A novel ship short-term speed prediction method under the influence of currents. Ocean Engineering 304, 117847, 2024. https://doi.org/10.1016/j.oceaneng.2024.117847
- . Event-triggered predictive path following control of autonomous ships with an MMG model. Ocean Engineering 314, 119582, 2024. https://doi.org/10.1016/j.oceaneng.2024.119582
- . Optimization of sailing speed for inland electric ships based on an improved multi-objective particle swarm optimization (MOPSO) algorithm. Journal of Marine Science and Engineering 12(8), 1417, 2024. https://doi.org/10.3390/jmse12081417
- . Dynamic domain-based collision avoidance system for autonomous ships: Real experiments in coastal waters. Expert Systems with Applications 255, 124805, 2024. https://doi.org/10.1016/j.eswa.2024.124805
- . Hybrid physics-learning model based predictive control for trajectory tracking of unmanned surface vehicles. IEEE Transactions on Intelligent Transportation Systems 25(9), 11522-11533, 2024. https://doi.org/10.1109/TITS.2024.3374796
- . Clustering Theta* based segmented path planning method for vessels in inland waterways. Ocean Engineering 309, 118249, 2024. https://doi.org/10.1016/j.oceaneng.2024.118249
- . Scenario modeling method for collision avoidance testing in inland waterway. Ocean Engineering 298, 117192, 2024. https://doi.org/10.1016/j.oceaneng.2024.117192
- . A ship high-precision positioning method in the lock chamber based on LiDAR. Ocean Engineering 306, 118033, 2024. https://doi.org/10.1016/j.oceaneng.2024.118033
- . Predicting vessel arrival times on inland waterways: A tree-based stacking approach. Ocean Engineering 294, 116838, 2024. https://doi.org/10.1016/j.oceaneng.2024.116838
- . Intelligent ships and waterways: Design, operation and advanced technology. Journal of Marine Science and Engineering 12(9), 1614, 2024. https://doi.org/10.3390/jmse12091614
- . Numerical simulation system of navigation control with human-machine cooperation for maritime autonomous surface ships. 10th International Conference on Electrical Engineering, Control and Robotics, 2024. https://doi.org/10.1109/EECR60807.2024.10607257
2023
- . 长江西江大型船闸通航运行关键技术研究与展望. 水运工程, 2023.
- . A novel model predictive artificial potential field based ship motion planning method considering COLREGs for complex encounter scenarios. ISA Transactions 134, 58-73, 2023. https://doi.org/10.1016/j.isatra.2022.09.007
- . Regulation aware dynamic path planning for intelligent ships with uncertain velocity obstacles. Ocean Engineering 278, 114401, 2023. https://doi.org/10.1016/j.oceaneng.2023.114401
- . Model identification of ship turning maneuver and extreme short-term trajectory prediction under the influence of sea currents. Ocean Engineering 278, 114367, 2023. https://doi.org/10.1016/j.oceaneng.2023.114367
- . Risk identification method for ship navigation in the complex waterways via consideration of ship domain. Journal of Marine Science and Engineering 11(12), 2265, 2023. https://doi.org/10.3390/jmse11122265
- . Developments and applications of green and intelligent inland vessels in china. Journal of Marine Science and Engineering 11(2), 318, 2023. https://doi.org/10.3390/jmse11020318
- . 船舶编队控制综述. 交通运输工程学报, 2022, 22(4): 10-27. https://doi.org/10.19818/j.cnki.1671-1637.2022.04.002
- . A novel vessel route optimization algorithm based on segmented A-star algorithm in inland waterways. 7th International Conference on Transportation Information and Safety, 2023. https://doi.org/10.1109/ICTIS60134.2023.10243746
- . Robust model predictive ship heading control with event-triggered strategy. 7th International Conference on Transportation Information and Safety, 2023. https://doi.org/10.1109/ICTIS60134.2023.10243757
2022
- . 水路交通控制的研究现状与发展趋势. 水上安全, 2022(04): 34-43.
- . Dynamic anti-collision A-star algorithm for multi-ship encounter situations. Applied Ocean Research 118, 102995, 2022. https://doi.org/10.1016/j.apor.2021.102995 [ESI高被引论文]
- . Human–machine cooperation research for navigation of maritime autonomous surface ships: A review and consideration. Ocean Engineering 246, 110555, 2022. https://doi.org/10.1016/j.oceaneng.2022.110555
- . Ship maneuverability modeling and numerical prediction using CFD with body force propeller. Ocean Engineering 264, 112454, 2022. https://doi.org/10.1016/j.oceaneng.2022.112454
- . Predictive longitudinal following control for ship platoon considering diesel engine driven propeller reversal. Ocean Engineering 263, 112231, 2022. https://doi.org/10.1016/j.oceaneng.2022.112231
- . 船舶编队控制综述. 交通运输工程学报, 2022, 22(4): 10-27. https://doi.org/10.19818/j.cnki.1671-1637.2022.04.002
- . 无人水面艇三维激光雷达目标实时识别系统. 机械工程学报,2022,58(04):202-211. https://doi.org/10.3901/JME.2022.04.202
- . 船闸水域船舶列队协同停船预测控制器. 中国机械工程 33(4), 2022. https://doi.org/10.3969/j.issn.1004-132X.2022.04.006
2021
- . Predictive ship longitudinal following control considering diesel engine propulsion. 6th International Conference on Transportation Information and Safety, 2021. https://doi.org/10.1109/ICTIS54573.2021.9798476
- . Ship motion mathematical model in the ship lock waterway. 6th International Conference on Transportation Information and Safety, 2021. https://doi.org/10.1109/ICTIS54573.2021.9798499
- . 基于模型预测控制的船舶纵向航速协同控制方法. 交通信息与安全,2021,39(01):52-63. https://doi.org/10.3963/j.jssn.1674-4861.2021.01.0007
- . Cooperative ship formation system and control methods in the ship lock waterway. Ocean Engineering 226, 108826, 2021. https://doi.org/10.1016/j.oceaneng.2021.108826
- . Adaptive predictive path following control based on least squares support vector machines for underactuated autonomous vessels. Asian Journal of Control 23(1), 432-448, 2021. https://doi.org/10.1002/asjc.2208
2020
- . 无人船自适应路径跟踪控制系统. 机械工程学报,2020,56(08):216-227. https://doi.org/10.3901/JME.2020.08.216
- . Parameter identification of ship motion model based on multi-innovation methods. Journal of Marine Science and Technology 25(1), 162-184, 2020. https://doi.org/10.1007/s00773-019-00639-y
- . A composite learning method for multi-ship collision avoidance based on reinforcement learning and inverse control. Neurocomputing 411, 375-392, 2020. https://doi.org/10.1016/j.neucom.2020.05.089
- . 无人船路径跟随控制方法综述. 交通信息与安全, 2020(01): 20-26. https://doi.org/10.3963/j.jssn.1674-4861.2020.01.003
2019
- . Marine diesel engine speed control based on adaptive state-compensate extended state observer-backstepping method. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2019. https://doi.org/10.1177/0959651818794562?urlappend=%3Futm_source%3Dresearchgate.net%26utm_medium%3Darticle
- . Ship predictive collision avoidance method based on an improved beetle antennae search algorithm. Ocean Engineering 192, 106542, 2019. https://doi.org/10.1016/j.oceaneng.2019.106542
- . An improved A-star algorithm considering water current, traffic separation and berthing for vessel path planning. Applied Sciences 9(6), 1057, 2019. https://doi.org/10.3390/app9061057
2018
- . 基于激光雷达的内河无人船障碍物识别方法. 光学技术,2018,44(05):602-608. https://doi.org/10.13741/j.cnki.11-1879/o4.2018.05.015
- . 基于改进LSSVM的船舶操纵运动模型在线参数辨识方法. 中国造船,2018,59(02):178-189. https://doi.org/10.3969/j.issn.1000-4882.2018.02.019
- . 改进多新息卡尔曼滤波法辨识船舶响应模型. 哈尔滨工程大学学报,2018,39(02):282-289. https://doi.org/10.11990/jheu.201610070
- . Predictive path following based on adaptive line-of-sight for underactuated autonomous surface vessels. Journal of Marine Science and Technology 23(3), 483-494, 2018.
2017
- . Design method of USV course-tracker based on simulation and real vessel experiment. 4th International Conference on Transportation Information and Safety, 2017. https://doi.org/10.1109/ICTIS.2017.8047771
- . 基于多新息最小二乘法的船舶操纵响应模型参数辨识. 中国航海,2017,01: 73-78.
- . A state-compensation extended state observer for model predictive control. European Journal of Control 36, 1-9, 2017. https://doi.org/10.1016/j.ejcon.2017.05.002
2016
- . 基于混合式体系结构的无人船控制系统设计. 船海工程,2016,45(03):39-42.
- . 欠驱动水面模型船航向保持控制仿真平台. 中国航海,2016,39(04):1-5+112.
- . 基于MPC的无人船运动控制及可视化仿真系统实现. 武汉理工大学学报(交通科学与工程版),2016,40(02):245-250. https://doi.org/10.3963/j.issn.2095-3844.2016.02.009
- . 船舶智能避碰研究综述及展望. 交通信息与安全,2016,01: 1-9. http://dx.doi.org/10.3963/j.issn%201674-4861.2016.01.001
- . 船舶智能化研究现状与展望. 船舶工程,2016,38(03):77-84+92. https://doi.org/10.13788/j.cnki.cbgc.2016.03.077
- . 智能航运系统的发展现状与趋势. 智能系统学报, 2016, 11(6): 807-817. https://doi.org/10.11992/tis.201605007
- . 基于改进LSSVM的船舶操纵运动模型在线参数辨识方法. 第十一届中国智能交通年会大会论文集, 2016: 267-277.
2015
- . 基于 AIS的内河船舶油水分离器远程监管系统实现[J]. 交通信息与安全,2014(3):114-118. https://doi.org/10.3963/j.issn.1674-4861.2014.03.023
- . 基于AIS的在航船舶油水分离器状态信息远程传输方案设计与实现. 交通信息与安全,2015,33(02):124-131. https://doi.org/10.3963/j.issn1674-4861.2015.02.020
- . A positioning system based on monocular vision for model ship. International Conference on Computational Logistics, 209-221, 2015. https://doi.org/10.1007/978-3-319-24264-4_15
- . 基于船岸一体化的江海直达船舶在航动态监控系统构建. 船海工程,2015,44(03):114-118.
- . Technology of information collection and analysis about steering operation behavior of inland waterway sailing ship. Journal of Coastal Research, 483-489, 2015. https://doi.org/10.2112/SI73-085.1
- . Different drive models of USV under the wind and waves disturbances mpc trajectory tracking simulation research. 2015 International Conference on Transportation Information and Safety, 2015. https://doi.org/10.1109/ICTIS.2015.7232199
- . 基于单目视觉的水面船舶多目标定位方法. 交通运输工程学报,2015,12(05): 91-100. https://doi.org/10.19818/j.cnki.1671-1637.2015.05.012
- . Trajectory tracking control for underactuated surface vessels based on nonlinear model predictive control. Computational Logistics (ICCL), 166-180, 2015.
- . 基于MPC的无人船运动控制可视化仿真系统实现. 第十届中国智能交通年会优秀论文集, 2015: 296-307.
2014
- . 内河在航液货船综合信息通用采集终端开发. 航海技术,2014,(3):39-42.
- . Towards an experimental platform for inland waterway ship navigation. Proceedings of the 11th IEEE International Conference on Networking, Sensing and Control, 2014. https://doi.org/10.1109/ICNSC.2014.6819712
- . Per estimation of ais in inland rivers based on three dimensional ray tracking[j]. Transnav the International Journal on Marine Navigation & Safety of Sea Transportation, 2014, 8(1):89-94. https://doi.org/10.12716/1001.08.01.10
- . 渔业生产安全保障远程管理系统. 武汉工程大学学报,2014,36(11):63-69.
- . A survey of simulation tools for waterway designing assessment. The Open Automation and Control Systems Journal 6(1), 2014.
- . USV发展现状及展望. 中国造船,2014,55(4):194-205.
学位论文
- . 内河无人船水面多目标检测与跟踪方法研究. 武汉理工大学, 2017.
- . Multi-target detection and tracking for unmanned surface vehicles in inland waterways. Ph.D. Thesis, Wuhan University of Technology, 2017.
- . 船舶油水分离器运行状态远程监控系统的设计与实现. 武汉理工大学, 2014. (校优秀硕士论文)
学术著作
- . 新一代航运系统导论. 武汉理工大学出版社, 2025. ISBN: 9787562974826.
- . Towards unmanned surface vehicles: Methods and practices. CRC Press, 2025. ISBN: 9781041115595. https://doi.org/10.1201/9781003660590
- . Intelligent ships and waterways: Design, operation and advanced technology. MDPI, 2024. ISBN: 978-3-7258-2241-6
- . 船舶智能航行控制方法与应用. 北京:科学出版社, 2021. ISBN: 9787030698216
研究方向与成果
船舶运动控制
模型预测控制、轨迹跟踪、欠驱动船舶控制
路径规划
A*算法改进、多船避碰、COLREGs约束规划
编队控制
多船协同、船闸通航、智能航运系统
强化学习
多船避碰决策、复合学习方法、人机协作
合作机构
与荷兰代尔夫特理工大学、新加坡南洋理工大学等国际知名高校保持长期合作关系。